Home / Software Posts / Simulation of Aortic Valve

Simulation of Aortic Valve

Bentley Expert Profile Image

Bentley Expert

Share

Since the time of Leonardo Da Vinci, it has been recognized that the sinuses behind the aortic valve leaflets produce vortices that aid in closure with minimal trans-valvular pressure.

 
  
VALVE 
 
 

In this example, we model an aortic valve with ADINA. The aortic root and valve are represented by a two-dimensional plane strain mesh. A sinusoidal pressure of 14 mmHg is applied to the ventricular face. Blood is treated as a slightly compressible Newtonian fluid with a viscosity of 4.6 centipoise, corresponding approximately to an experimentally determined shear rate of 180/s at 37°C. Both the leaflets and the aortic root are modeled as isotropic Neo-Hookean large-deformation solids with a constant of 50 kPa. The solution was obtained with ADINA-FSI.

Though it is well known that both structures are highly anisotropic, this plane strain example illustrates how ADINA effectively handles the difficult problem of the contact of two submerged cardiac leaflets.

Problem provided by Dr. Daniel Einstein, Univ. of Washington

Relevant Tags

Every structure has its own unique natural frequency exhibited while disturbed by some external dynamic force. The external dynamic force ...

Each material has unique damping properties. If you want to analyze a structure composed of both steel and concrete you ...

The most common type of retaining wall section is tapered with a stepped pattern. You can model the retaining wall ...