Determining Peak Demands in Buildings
AWWA recently announced the release of the fourth edition of its popular manual, M22-Sizing Service Lines and Meters. You might be thinking, “What could be new in sizing service lines?” For the most part, not much has changed, but there has been a major update to the way that residential peak demand is calculated. If you only have a single fixture in a building, then the peak demand in the building is the same as for the single fixture. If you have two fixtures, just add the demands. As the number of fixtures increases, however, the chance that all will be running at the same time decreases. This problem was solved nearly a century ago by Roy B. Hunter of the National Bureau of Standards (Hunter 1940, 1941) who developed an expedient method based on the Binomial theorem and flows from typical water fixtures from the 1930s. The result was the widely used Hunter’s Curves that related the peak water demands to the number of fixture units. The iconic Hunter’s Curve worked so well that it was quickly incorporated into many plumbing codes around the world. Over the years, however, the Hunter’s fixture unit concept has been modified by various